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Some philosophers have posited a distinctively logical notion of necessity –
logical necessity – under which logical truths alone are necessary.1 This posit
leads to the following two questions:

1. Logical truths are usual taken to be sentences, necessary truths to be
propositions. Is there then a propositional notion of logical necessity
corresponding to the linguistic notion of logical truth and, if there is,
then how is the correspondence to be made out?

2. Granted that there is a propositional notion of logical necessity, then
what is its logic?

These questions will be our principal concern in what follows. However, there
are some other questions one might wish to consider. These include the ques-
tion of whether logical necessity is the strongest form of necessity, the question
of whether other notions of necessity can be explained in terms of logical ne-
cessity, and the question of whether the notion of logical necessity can itself
be explained in other terms. We shall briefly touch on these other questions,
and we refer the reader to a fuller treatment of them in the references.

1 Logical Truth and Logical Necessity

We suppose given a primitive propositional operator, 2. This is to be under-
stood as logical necessity, so that ‘2 . . .’ for a given sentence ‘. . .’ may be read:
it is a logically necessity that . . .. Our intention is that the understanding of
logical necessity should be appropriately related to our understanding of logi-
cal truth. However, logical truth, as it is typically spelled out, is a predicate
of sentences – attaching to a name of a sentence to form a sentence, whereas
logical necessity is typically a propositional operator – attaching to a sentence
(not a name of a sentence) to form a sentence. There is therefore no straight-
forward way of explicitly defining the one in terms of the other. What we may
do instead is to impose some constraints on how the two notions are to be
related.2

As a representative example of such constraints, we might demand that
the sentence:

It is logically necessary that Hesperus is identical to Hesperus

1The notion of logical necessity appears throughout the history of philosophy; see for
instance the collection Rini et al. (2016).

2This problem was brought into prominence by Quine; see Quine (1953)
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be true since the sentence ‘Hesperus is identical to Hesperus’ is a logical truth;
and we might also demand that the sentence:

It is logically necessary that Daniel Bernoulli was the son of Johan
Bernoulli

be false since the sentence ‘Daniel Bernoulli was the son of Johan Bernoulli’ is
not a logical truth. In general, we may stipulate that ‘it is logically necessary
that’ is to be interpreted in such a way as to make the following true for any
sentence A of a given language L:

Bridge Principle ‘It is logically necessary that A’ is true if and only if ‘A’
is a logical truth.

It should be recognized that this principle is not only schematic in the sentence
A but also in the language L and in the notion of logical truth. Thus the import
of the principle is different depending upon what we take the language L to
be and what we take logical truth to be. In what follows we will consider
variations along these two parameters, but it will be important for us always
to allow the language L itself to contain the operator 2 for logical necessity.
Logical truths may themselves involve the notion of logical necessity.

The above principle raises a number of interesting philosophical questions.
One is whether we should think of the logical possibilities as real or substantive
possibilities as to how things might be. It is logically possible that Daniel
Bernoulli had different parents. But do we want to say that there is a real
possibility that he had different parents even though it is not metaphysically
possible that he had different parents.3 There are different ways one might go
on this question but, fortunately, our use of the Bridge Principle as a constraint
will not require us to take a stand.

There is also a question as to whether we might want to beef up the Bridge
Principle and whether we might, in particular, want to treat the statements
on the right of the biconditional as providing some kind of reduction of the
statements on the left of the biconditional. This is the most natural way of
construing the “provability interpretation” of modal logic (as in the work
of Solovay (1981) or in the formulation of the modal paradoxes in Montague
(1963)). The Bridge Principle is treated, in effect, as the means by which
a modal statement may, in any context in which it occurs, be replaced or

3There is a purely verbal issue we should set aside: in some of the earlier literature,
‘logical necessity’ was sometimes treated as just another term for metaphysical necessity,
and as a result many claims were counted as ‘logically necessary’ which are not logically
necessary in our sense.
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“grounded” by a corresponding predicative statement. But again, our ap-
proach is neutral on this question, as it is on the question of whether one
might wish to go in the reverse direction and reduce logical truth to logical
necessity.

A more substantive question for us concerns the application of the Bridge
Principle when the given language contains the identity predicate or the idioms
of quantification. The application of the Principle to quantified statements
is not straightforward since it applies most directly to closed not to open
sentences and so would appear to call for a substitutional interpretation of the
quantifiers. We deal with this question in section 4 but let us here focus on
the case of identity. Given that Hesperus is identical to Phosphorus, it follows
that:

it is logically necessary that Hesperus is identical to Hesperus if and only
if it is logically necessary that Hesperus is identical to Phosphorus.

But under the conventional view in which ‘Hesperus is identical to Hesperus’
is a logical truth while ‘Hesperus is identical to Phosphorus’ is not, the left-
hand-side of the above biconditional will be true and the right-hand-side false.

There are a number of ways out of this difficulty. Fine has proposed an
account of logical truth under which ‘Hesperus is Phosphorus’ is a logical
truth by requiring that it is the referents of the names, rather than the names
themselves, which should figure in the logical form.4

Another solution is to suppose that we are working within a language which
never contains two constants for the same thing. Within such a language,
there will then be no true non-trivial identities, such as ‘Hesperus is identical
to Phosphorus’, and so the previous problem will not arise. We might take this
proposed solution one step further and suppose that we are working within
what Russell calls a logically perfect language:

In a logically perfect language the words in a proposition would
correspond one by one with the components of the corresponding
fact, with the exception of such words as “or”, “not”, “if”, “then”,
which have a different function. In a logically perfect language,
there will be one word and no more for every simple object, and
everything that is not simple will be expressed bya combination of
words, by a combination derived, of course, from the words for the
simple things that enter in, one word for each simple component.’
Russell (1940), p.25.

4See Fine (1989) and Fine (1990).
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In such a language there will be no two simple names for the same thing and,
also, no simple expression for something complex — a simple predicate ‘vixen’,
for example, for the complex property of being a female fox. Thus just as the
problem over the logical necessity of Hesperus being identical to Phosphorus
will no longer arise, nor will the problem over the logical necessity of the
property of being a vixen being the same as the property of being a female
fox. Moreover, such a constraint on the language is very natural given that
our aim, in setting up the Bridge Principle, is to project the logical features of
language down onto the logical features of the world. We might also weaken
the constraints on a logically perfect language by broadening the notion of
logical truth. We might, for example, follow Frege in the Grundlagen and take
a sentence to be an analytic truth if S logically follows from some suitable set
of identities or definitions.5 We could then say that it is an analytic necessity
that vixens are female foxes given that ‘vixens are female foxes’ follows, by
definition, from ‘to be a vixen is to be a female fox’. But, of course, how far
we can go in this direction is very much an open question.6

2 Logical Truth

There are several accounts of logical truth—model theoretic, proof-theoretic,
substitutional, and the like7—which might be plugged into the Bridge Principle
to obtain a notion of logical necessity. Common to almost all accounts of logical
truth are the satisfaction of two constraints: (i) that logical truths be true8;
and (ii) that they be closed under substitution.

The first of these constraints is relatively straightforward.9 The second calls

5Frege (1884).
6For an older discussion of this question, see Pap (1958).
7See [GRIFFITHS AND PASEAU] this volume.
8Since we have taken L to be an interpreted language, we have a notion of truth sim-

pliciter for sentences of L. Going forward we will assume, without comment, that truth
behaves classically with respect to the truth functional connectives. That is, a conjunction
is true iff both conjuncts are, the negation of a sentence is true iff the sentence is not true,
and so on.

9Though not altogether straightforward, since it conflicts with certain model-theoretic
accounts of logical truth. Consider a language with a primitive logical cardinality quantifier,
‘there are numerous x’, for which it is true that there are numerous sets but not true that any
set has numerous members. Combine this with a model theoretic account of logical truth
where being logically true amounts to being true across a class of models whose domains of
quantification are given by a set. Then the sentence ‘there are numerously many things’ is
true whilst being a logical falsehood. One might, of course, take this to reveal a problem
for the proposed account of logical truth rather than for the proposed constraint.
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for more explanation. It presupposes a distinction between the logical and the
non-logical constants. Here we count 2 itself as a logical constant, along
with the other familiar logical constants such as ∧ and ∀.10 A substitution is
then an operation that maps expressions to expressions by uniformly replacing
each non-logical constant in an expression with another expression of the same
logical type; and a set of expressions will be closed under substitution if the
result of applying a substitution to any expression in the set will also lie
in the set. Such a rule is naturally taken to encode the idea that logic is
topic-neutral – that whereas the special sciences may make distinctive claims
concerning a specific subject-matter, the laws of logic will hold regardless of
the subject-matter. So if we take the subject-matter of a claim to be given
by its non-logical constants, then the logical truth of such a claim should not
turn on which particular non-logical constants are used in the formulation of
the claim.

Our investigation will be restricted to theories that meet a third constraint,
that the set of logical truths should contain the standard axioms of classical
logic (appropriate to the given language) and be closed under the standard
rules of classical logic. We do not wish to be dogmatic on this matter, but
the treatment of non-classical logic lies outside the scope of the present paper.
We call a set of sentences meeting these three conditions a sound logic. We
will sometimes also consider a condition stronger than classicality, in which
the logical truths must constitute a normal modal logic. We summarize the
relevant distinctions in the following definition.

Definition 1. Let ∆ be a set of interpreted sentences in a language L (for
which there is a notion of truth simpliciter) closed under the truth functional
connectives and 2. Then

1. ∆ is a theory iff it contains all substitution instances of classical laws
and is closed under all classical rules (appropriate for L).

2. ∆ is a logic iff it is a theory and is closed under the rule of substitution.

3. ∆ is sound iff every element of ∆ is true.

4. ∆ is a normal logic iff it is a logic and

10In section 3.2 we briefly consider the possibility that 2 could be defined, albeit from
other logical constants. It’s worth noting that one can raise many of the issues we discuss
in this article without making the assumption that 2 is logical (in virtue of being a logical
constant, or defined from them), although we have not done so for reasons of space. Bevan
(2022) makes same headway in this direction.
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(i) Every instance of the schema 2(A → B) → 2A → 2B belongs to
∆

(ii) 2A ∈ ∆ whenever A ∈ ∆.

Our discussion will be organized as follows: in section 3 we will consider
the general case where the set of logical truths, ∆, is simply any set of truths
closed under classical logic and the rule of substitution—i.e. any sound logic.
In section 4 and 5 we consider two more specific accounts of logical truth, one
inspired by Bolzano in which a logical truth is a matter of having only true
substitution instances, and another by Tarski where one instead quantifies into
the position of the non-logical constants.

3 The Metalogical Constraint

We take L to be an interpreted language containing the unary operator 2;
and we take ∆ to be a set of sentences of L – the putative ‘logical truths’—
meeting the three previous constraints (truth, closure under substitution, and
classicality). The general form of the Bridge Principle then looks like this:

The Metalogical Constraint 2A is true if and only if A ∈ ∆, for every
sentence A of L.

And we may then ask whether there is an interpretation of 2 which satisfies
this constraint for some sound logic ∆.

A step in this direction would be to find, for a given logic ∆, a model
M of ∆ which is such that 2A is true in M if and only if A ∈ ∆. For
the metalogical constraint would then be satisfied as long as the truth of an
interpreted sentence of L can be identified with the truth of the corresponding
un-interpreted sentence in M . The soundness of ∆ also follows from this
identification and the fact that M is a model of ∆.

3.1 Propositional languages

We start by considering the simplest non-trivial language in which we could
formulate this constraint: the language of propositional modal logic. This
language is obtained from closing an infinite set of propositional constants
{p1, p2, . . .} under the binary connective ∧, and the unary connectives ¬ and 2.
We adopt standard abbreviations for the other logical connectives. A model,
in this context, will be identified with a certain sort of valuation: a function
defined on the language of propositional modal logic that maps sentences to 1
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or 0, representing truth and falsity respectively. Clearly a conjunction must be
true if and only if both conjuncts are true, and the negation of sentence true if
and only if the sentence is false. In keeping with the metalogical interpretation,
we must also require that the necessitation of a sentence is true if and only if
the sentence is a member of the logic ∆.11

Definition 2 (Meta-valuations). Let ∆ be a logic, a set of sentences closed
under classical logic and the rule of substitution. A function v : L → {0, 1} is
a ∆-valuation if and only if

� v(A ∧B) = min(v(A), v(B))

� v(¬A) = 1− v(A)

� v(2A) = 1 iff A ∈ ∆

The metalogical constraint is thus automatically satisfied (relative to a
valuation) with respect to a logic, ∆. In virtue of being a logic, ∆ is closed
under classical logic, and the rule of substitution. Soundness, by contrast,
corresponds to a non-trivial condition. It is satisfied by a logic ∆ relative to v
only if the every sentence in ∆ is true in v. We thus introduce the following
concept:

Definition 3. A logic ∆ is existentially coherent iff there exists a ∆-valuation
v that satisfies ∆ (for every A ∈ ∆, v(A) = 1).

We will drop the word ‘existentially’ when no ambiguity arises. Intuitively,
a logic is coherent when it admits an interpretation of 2 in which it is both
sound and satisfies the metalogical constraint; this provides us with the de-
sired model. Not every logic is coherent. Just consider the inconsistent logic
consisting of all formulas whatever! Nor is every consistent normal modal logic
coherent. For consider the normal modal logic whose sole additional axiom is
2p ∨ 2¬p. If this logic were sound then it would contain either p or ¬p as a
theorem, and so inconsistent after all.

Our chief concern is to figure out what the logic of logical necessity is.
We can make a little bit of progress on this question: given the metalogical
constraint with respect to a sound logic ∆, it is possible to show that every
instance of the the K and T axioms must be true. If we additionally assume
that the set of logical truths, ∆, is a normal modal logic then every instance
of the 4 axiom must also be true.

11This is essentially the notion of a metavaluation found in Fine (1971–3), pp.1-5. Meyer
(1971) contains a similar definition, except that he instead requires that v(2A) = 1 if and
only if 2A ∈ ∆.
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K 2(A → B) → 2A → 2B

T 2A → A

4 2A → 22A

For K, the truth of 2(A → B) and 2A ensure that A → B,A ∈ ∆. Since ∆
is a logic, B ∈ ∆; and so by the metalogical constraint, 2B is true. For T,
suppose that 2A is true. The metalogical constraint tells us that A ∈ ∆; and
so, by the soundness of ∆, A is true. For 4, the truth of 2A similarly ensures
that A ∈ ∆ and so, by the normality of ∆, it follows that 2A ∈ ∆, which by
the metalogical constraint means that 22A is true.

We may obtain a model-theoretic version of this result by replacing ‘truth’
with ‘truth in v’ in the above reasoning, and replacing appeals to soundness
with appeals to coherence:

Proposition 1. If ∆ is a coherent logic that is sound with respect to a ∆-
valuation v, then every instance of the K and T axioms are true in v. If ∆ is
a coherent normal modal logic every instance of 4 is also true in v.

Remark 1. While the metalogical constraint secures the truth of all the in-
stances of K,T and (perhaps) 4 for logical necessity, it does not secure their
logical truth—i.e. their membership in ∆—or indeed their logical necessity,
since we have placed very few conditions on ∆ apart from being a sound logic.
We might take this to motivate positing a further sufficient condition on being
a logical truth on top of being a sound logic, expressing a kind of completeness
property: that ∆ must contain any sentence whose substitution instances are
true in all metavaluations for ∆. Adding this further constraint on top of our
other constraints will ensure that ∆ is normal and indeed an extension of S4M.
We discuss an equivalent constraint in section 4.

Our constraints also place some negative restrictions on the logic of logical
necessity. John McKinsey argued that the Brouwerian axiom, B, cannot be
part of the logic of logical necessity.12

B A → 23A

His argument relied on the fact that, given the rule of substitution, claims
of the form 3A are rarely logically true unless A is, and so claims of the
form 23A are rarely true. We reconstruct this argument in the setting of
propositional modal logic below.

12See Anderson and Belnap (1975) p123, also recounted in Humberstone (2016) p168.
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Proposition 2. No coherent normal modal logic contains the B principle.

Suppose, for reductio, that ∆ is a coherent normal modal logic containing
B. If v is a ∆-valuation that satisfies ∆ then every instance of B holds in v
since B ∈ ∆. For a sentence letter, p, v(p) = 1 or v(¬p) = 1, so that either
v(23p) = 1 or v(23¬p) = 1. If the former, then 3p ∈ ∆, and since ∆ is
closed under the rule of substitution, 3⊥ ∈ ∆. Since ∆ is normal, this means
it is the inconsistent logic. But as we previously observed every coherent logic
is consistent. In the case that v(23¬p) = 1 we may conclude 3¬⊤ ∈ ∆ using
similar reasoning.

Remark 2. There are various ways one could resist this argument against the
B principle. Carnap’s theory of logical necessity (found in, for example, Carnap
(1946), Carnap (1947)) includes all the principles of S5. However Carnap’s
notion of validity is not closed under the rule of substitution, a key premise
in McKinsey’s argument; see for instance the discussion in Schurz (2001),
Meadows (2012) §3.1 and Cresswell (2013). Further discussion of Carnap’s
theory of logical necessity can be found in these references, as well as in Hendry
and Pokriefka (1985), Cocchiarella and Freund (2008) and the edited volume
Rini et al. (2016).13

It is instructive to look at some equivalent ways of stating the property
of existential coherence. Note that the definition of an existentially coherent
logic involves an existential quantifier over ∆-valuations, but it could just
as well have involved a a universal quantifier. If the logic ∆ satisfies the
latter condition—i.e. it holds in all ∆-valuations—we call the logic universally
coherent (following the notion of coherence defined in Meyer (1971)).

Proposition 3. A logic ∆ is existentially coherent if and only if it is univer-
sally coherent.

The argument here, however, relies on features rather distinctive to propo-
sitional languages.14 In contexts where these might be differentiated we will

13Particularly relevant to the present section is Cresswell (2013), who isolates Carnap’s
propositional modal logic via the notion of a Carnapian valuation. These are defined as in
definition 2, except for the clause for necessity: v(2A) = 1 if and only if u(A) = 1 for every
Carnapian valuation u. A related account of logical necessity, inspired by the Tractatus, is
given in Cocchiarella (1974).

14The right-to-left direction holds because for any two ∆-valuations, v and u, and non-
modal formula A, it is possible to construct a substitution i such that v(A) = u(iA) (by
mapping letters to their negations when u and v disagree, leaving them alone otherwise).
Because ∆ is a logic i is invertible, A ∈ ∆ if and only if iA ∈ ∆, so that v(2A) = u(2iA),
and indeed v(A) = u(iA) for arbitrary A. Thus, if A ∈ ∆, and u is a ∆-valuation in which
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distinguish existentially coherent from universally coherent logics (see the sub-
sequent section).15 Since it is existential coherence that is relevant to the con-
sistency of the metalogical constraint, we will always take ‘coherence’ to mean
‘existential coherence’ going forwards.

In the context of normal modal logics we find some other revealing char-
acterizations of coherent logics. Let us say that the maximalization of a logic,
∆, is the theory obtained by adding to ∆ the sentences of the form 3A where
A is consistent in the logic ∆.16 The maximalization of ∆ intuitively states
that every one of the things that are consistent is possible.

Proposition 4. A normal modal logic ∆ is coherent if and only if its maxi-
malization is consistent.

Remark 3. Note that the maximalization of a logic is a theory but is not
itself a logic unless it is inconsistent. The maximalization of any normal logic,
if it is consistent, will contain 3p but not 3⊥ and so is not closed under the
rule of substitution.

Our final characterization of coherent logics relates them to a well-understood
property in modal logic, the disjunction property17

Definition 4 (The disjunction property). A normal modal logic ∆ has the
disjunction property when the following holds for any sentences A1, . . . , An:

If 2A1 ∨ . . . ∨2An ∈ ∆ then Ak ∈ ∆ for some k with 1 ≤ k ≤ n.

Thus we have:

∆ holds, then iA is true in u for any substitution i, and thus A holds in any other valuation
v.

15There is an issue of specifying what the analogue of a metavaluation is for a language
containing the language of predicate logic. However this is resolved, one would expect to be
able find valuations that disagree about non-modal logical statements that are independent
of first-order logic (for example, whether there are three individuals or not). This means that
universally coherent logics cannot contain any “substantive” non-modal logical statements.
This is especially acute in the case of higher-order languages, where highly complicated non-
modal logical statements can be formulated, such as versions of the continuum hypothesis.
Universal coherence also doesn’t imply existential coherence: the existence of models of a
logic where the truth of 2A coincides with belonging to the logic is likely highly non-trivial
for higher-order logics (for the propositional case existence it is trivial).

16A is consistent in ∆ iff the smallest theory containing ∆ ∪ {A} is distinct from L.
17See, for example, van Benthem and Humberstone (1983), Chagrov and Zakharyaschev

(1997) chapter 15.
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Proposition 5. A normal modal logic is coherent iff it has the extended dis-
junction property.18

Note that while we have been able to deduce various properties of coherent
logics, we have not yet shown that there are any. We end the subsection by
describing a general sufficient condition for a logic to be coherent in terms of
Kripke frames, and showing that a few well-known normal modal logics are
coherent. The reader unfamiliar with the notion of a Kripke frame may skip
ahead.

Definition 5. A pointed Kripke frame is a triple F = (W,R,w) where W is
a set (the worlds), R ⊆ W × W (the accessibility relation) and w ∈ W (the
root), and w bears the ancestral of R to every element of W . If v ∈ W , we
write F ↑ v for the pointed frame with root v obtained by restricting W and
R to the worlds that v bears the ancestral of R to. We call this a generated
submodel of F by v.

Every class of pointed frames determines a logic (see, for instance, Goranko
and Otto (2007) definition 4). Moreover, this logic is normal whenever that
class is additionally closed under generated submodels.

Definition 6 (Disjoint p-morphic copies). A class C of pointed frames is closed
under disjoint p-morphic copies iff for any pointed frames F1, . . . ,Fn ∈ C,
there is another pointed frame F ∈ C, worlds w1, . . . , wn accessible to the
designated world of F , and p-morphisms fi : F ↑ wi → Fi for i = 1 . . . n such
that wi ↑ ∩wj ↑= ∅ when i ̸= j, and fi(wi) is the designated world of Fi.

Example 1 (Coalesced sums). Given disjoint pointed Kripke frames F1, . . . ,Fn,
their coalesced sum is the pointed Kripke frame F = (W,R,w0) where:

� W := W1 ∪ . . . ∪Wn ∪ {w0}

� R := R1 ∪ . . . ∪Rn ∪ ({w0} ×W )

The designated worlds wi ∈ Wi, and the identity mappings from F ↑ wi to Fi

comprise the relevant p-morphisms.
Note that many properties of the component frames are inherited by the

coalesced sum. For instance, if F1 . . .Fn are some combination of the prop-
erties of being reflexive, serial or transitive, then F is also that combination
of reflexive, serial or transitive. So these classes are all closed under taking
disjoint p-morphic copies.

18In Bacon and Fine (2023) it is shown that universal coherence (and thus existential
coherence) is equivalent to an extension of the disjunction property: that if A0 is non-
modal, and A0 ∨ 2A1 ∨ . . . ∨ 2An ∈ ∆ then Ak ∈ ∆ for some k with 1 ≤ k ≤ n. The
extended disjunction property is equivalent to the disjunction property: see Jeřábek.
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Proposition 6. If ∆ is characterized by a class of pointed frames that are
closed under disjoint p-morphic copies, then ∆ is coherent.

Since the following logics are all characterized by the class of all pointed
frames satisfying some combination of reflexivity, seriality or transitivity, we
can immediately infer:

Corollary 7. K, KT, S4, KD, K4D are coherent.

Less work has been done on non-normal modal logics, although one case is
particularly straightforward. Let Γ be the set of theorems of classical logic in
L — the substitution-instances of tautologies. Γ is a natural logic to plug into
the metalogical constraint since it is the smallest logic. It is obvious that every
substitution instance of a tautology is true in any Γ-valuation, since valuations
assign classical truth values with respect to the truth functional connectives.
Thus:

Proposition 8. Classical logic, Γ, is coherent.

This interpretation of 2 is explored in Urquhart (2010), where 2A is read
as ‘it’s a tautology that A’.

We conclude this section with a question. Say that a coherent logic, Λ, is
maximal iff whenever Λ ⊆ ∆ and ∆ is coherent, ∆ = Λ. It follows by Zorn’s
lemma that there are maximal coherent logics, and indeed we will encounter an
example of one later (Medvedev logic). What are other examples of maximal
coherent logics, and does the class of maximal coherent logics have a simple
characterization?

3.2 The Metalogical Constraint in Other Languages

Apart from the logic, ∆, the other parameter we can vary is the language
L. In this section we briefly discuss the the situation for languages that ex-
tend propositional languages with quantificational resources. We will focus on
higher-order languages, as they contain other quantificational languages, such
as first-order languages, as fragments. Expressions of a language can gener-
ally be divided into different logical types: sentences, predicates, connectives,
names and so on. Higher-order languages contain, in addition to the truth
functional connectives, quantifiers that can bind into the position of different
logical types analogous to the way that first-order quantifiers bind into the po-
sition of a name. The non-logical constants may also include constants of other
types; propositional letters being the special case of a non-logical constant of
sentence type. As before, logical necessity is treated as an operator expression,
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2, which we can introduce as either a new primitive logical constant, or by
definition from other logical constants.19

For non-propositional languages the notion of a model of a logic ∆ which
satisfies the metalogical constraint will be more involved than the notion of
a metavaluation from the propositional case. But we can circumvent talk-
ing about models by focusing on either of the two equivalent formulations of
coherence given in propositions 4 and 5.20 Since having a consistent maximal-
ization and the disjunction property are straightforwardly equivalent, even in
this context, it does not matter which we use:21

Definition 7. Let L be a higher-order language containing an operator con-
stant 2. A higher-order logic ∆ is maximalizable iff its maximalization, the
theory obtained by adding {3A | ¬A /∈ ∆, A closed} to ∆, is consistent.

Some results on maximalizable higher-order logics can be found in Bacon
(2023) §18.5-6 and Bacon and Dorr (forthcoming) appendix E. The main tool
for establishing these results is a generalization of the coalesced sum construc-
tion presented in the previous section.

4 The Substitutional Constraint

In the previous section we imposed a very minimal constraint on the logical
truths—we required only that they constitute a sound logic. This constraint
is fairly liberal: classical propositional logic, for instance, is a sound logic, but
it intuitively doesn’t include all the logical truths as there are presumably
distinctively modal logical truths. We noticed, for instance, that every substi-
tution instance of K and T are true in any Γ-valuation (Proposition 1) when
Γ is classical propositional logic. One might therefore think that these are

19Because of the expressive limitations of propositional languages, the possibility of defin-
ing 2 was not open in that setting. The crucial assumption here is that 2 can be defined
without reference to non-logical constants so that it is left alone by substitutions of a lan-
guage.

20So we here exclude from consideration non-normal logics.
21Note that a normal modal logic ∆ has the disjunction property iff it has a con-

sistent maximalization. In particular if A1, . . . , An are individually consistent with ∆,
3A1, . . . ,3An are jointly consistent with ∆. For if 2¬A1 ∨ . . . ∨ 2¬An ∈ ∆, then by
the disjunction property one of the Ai is not consistent with ∆ after all. The consistency
of the maximalization of ∆ follows by compactness (recalling that we defined a set X to
be consistent iff no theory containing X ∪ ∆ is L, where a theory is a set of sentences
closed under the classical laws). It is straightforward to show that a coherent logic has the
disjunction property.
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plausibly logical truths even though they are not theorems of classical propo-
sitional logic. In this section, and the next, we will consider strengthening the
metalogical constraint with completeness conditions along these lines.

We begin with an account, going back to Bolzano, in which a sentence
is logically true if it is true in virtue of its logical form alone.22 The logical
form of a sentence is that which is common to every substitution instance of
that sentence. So according to this account, a sentence may be taken to be
logically true if and only if every one of its substitution instances is true. Now
clearly every substitution instance of a theorem of classical propositional logic
is true, and so is a logical truth by this account. Indeed, the set of all sentences
with only true substitution instances is a sound logic—it is closed under the
rule of substitution, and consists only of truths—and so this account of logical
truth meets the minimal set of requirements from section 2. But classical
propositional logic is far from complete. As noted above, every instance of K
and T can be shown to be true, and so K and T will count as logical truths
too; something we were unable to conclude from the metalogical constraint
alone. Thus the strengthened constraint is:

The Substitutional Constraint 2A is true if and only every substitution
instance of A is true.

One direction of this constraint holds of any operator satisfying the more gen-
eral metalogical constraint, for the truth of 2A implies that A ∈ ∆; but since
∆ is closed under substitutions, and contains only truths, every substitution
instance of A must be true. However, the other direction is distinctive to
this theory. This account of necessity was originally investigated in McKinsey
(1945).

The substitutional constraint tells us a lot more about the logic of logical
necessity. We will see that all instances of K, T, 4, M and a principle we
call Sub are true, and thus are also logical truths.23 We are similarly able to
show that the logical truths are closed under necessitation. For if A is a logical
truth, i.e. every substitution instance of A is true, then so is every substitution
instance of any substitution instance of A. This ensures that any substitution
instance of 2A is true, so that 2A is also a logical truth. Together this means
that the logic of logical necessity must include every theorem of S4MSub.

22See, for instance, Morscher (2018) section 4.8. Bolzano’s account was directed at propo-
sitions, not sentences, and so could be considered a direct account of logical necessity that
does not pass through the notion of logical truth.

23To establish the truth any instance of K, for example, assume that 2(A → B) and 2A
are true, so that every substitution instance of (A → B) and A are true. This means that
every substitution instance of B is true and finally that 2B is true, securing K.
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4.1 Propositional languages

We again focus on the case of propositional languages and, as before, we
introduce the notion of a valuation which will behave classically with respect
to ∧ and ¬, and in which 2 will be governed by the substitutional constraint.

Definition 8 (Substitutional valuation). A function v : L → {0, 1} is a
substitutional valuation if and only if

� v(A ∧B) = min(v(A), v(B))

� v(¬A) = 1− v(A)

� v(2A) = 1 if and only if v(A′) = 1 whenever A′ is a substitution instance
of A.

In this section only, ‘valuation’ will refer to substitutional valuations. Fol-
lowing the Bolzanoean characterization of logical truth, validity is defined by:

Definition 9. A sentence A is valid iff all substitution instances of A are true
in every valuation: v(A′) = 1 for every valuation v and substitution instance
A′ of A.

We stated above that given the substitutional constraint the logic of logical
necessity extends S4M. This is the smallest normal modal logic containing T,
4, encountered above, and McKinsey’s axiom M:24

M 23A → 32A

Proposition 9. Every theorem of S4M is valid.

It is a relatively easy exercise to establish that validity is closed under the
rule of necessitation (if A is valid, so is 2A) and that the K, T, 4 and M
axioms are valid. To illustrate the general mode of argument, we establish the
validity of M. Suppose that v is a valuation and A an arbitrary sentence. If
v(23A) = 1 then for every substitution i, there exists a substitution j such
that v(j(iA)) = 1 (writing iB for the result of applying a substitution to a
sentence B). Let i be any substitution that maps every letter to a tautology,
⊤. It can be shown that v(j(iA)) = v(iA) for any substitution j. It follows
that v(iA) = 1, since by assumption we know there is a j with v(j(iA)) = 1.
Similarly, it follows that for any j, v(j(iA)) = 1, so v(2iA) = 1 and finally
v(32A) = 1.

24Relative to transitive reflexive frames, McKinsey’s axiom characterizes the class frames
in which every world sees a world that only sees itself.
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A more complex example of a validity is a principle we will call the ‘subset
principle’, Sub (for reasons that will become clear). Let us write Z ⊆0 Y
(Z ⊂0 Y ) to mean that Z is a non-empty (proper) subset of Y . To each set,
X = {1, . . . , n}, associate in some canonical way some consistent propositional
formulas, A1, . . . , An, that are pairwise inconsistent and have a tautologous
disjunction. For every non-empty Y ⊆ X, we will define a formula DX

Y (or
simply DY when X is clear from context). When |Y | = 1, Y = {m} for some
m, so set D{m} = 32Am ∧

∧
k ̸=m ¬32Ak. When DZ is defined for |Z| ≤ k

and |Y | = k + 1, set DY =
∧

Z⊂0Y 3DZ ∧ 2(
∧

Z⊂0Y 3DZ ∨
∨

Z⊂0Y DZ). The
subset principle is then:25

Sub
∨

Y⊆0X DY

Proposition 10. Sub is valid.

The proof of this proposition is more involved; it can be found in Bacon
and Fine (2023) proposition 30.

The reader may have noted that we have not yet provided any examples
of substitutional valuations. In fact establishing the existence of a valuation
is quite non-trivial, and appeared in Harvey Friedman’s One hundred and two
problems in mathematical logic (see Friedman (1975), problem 42), along with
the question of whether the valuation was unique once the truth values of the
propositional letters has been fixed. The difficulty arises because the clause
for the truth of 2A (in a valuation) depends on the truth of all substitution
instances of A. Because these may have a much higher complexity than A—
they may even involve 2A itself—there is a degree of circularity here. The
existence portion of the conjecture was independently settled affirmatively by
Prucnal (1979) and Fine (later published in Bacon and Fine (2023)), and the
uniqueness portion remains open.

The Prucnal-Fine valuation can be described as a ∆-valuation (in the sense
of section 3) with respect to a suitable choice of logic, ∆. Consider the class
of Kripke frames of the form (P (X) \ ∅,⊇) where X is a finite set—i.e. finite
partial orders of non-empty sets under the superset ordering. Call the logic of
these frames Med.

Proposition 11 (Prucnal, Fine). Every Med-valuation is a substitutional val-
uation.

25It can be seen to be imply an axiom schema from Holliday (2017) and Hamkins et al.
(2015), where 1 < k ≤ m:

(
∧

i≤m 32Ai ∧ ¬3
∨

i ̸=j Ai ∧Aj) → 3(
∧

i≤k−1 32Ai ∧
∧

k≤j≤m ¬32Aj)

Sub is strictly stronger than this axiom in the presence of S4.
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This fact puts further bounds on the logic of logical necessity. For if A is
valid, then every substitution instance of A is true in any substitutional valu-
ation, and thus in any Med-valuation. Since Med-valuations are substitutional
valuations, this means 2A is true in any Med-valuation, which only happens
if A ∈ Med. Thus if ∆ is the set of validities with respect to the substitutional
constraint, S4MSub ⊆ ∆ ⊆ Med.

Yet further progress can be made if the uniqueness conjecture is settled
affirmatively:

Conjecture 12. For any two substitutional valuations, v and u, if v(p) = u(p)
for every propositional letter p, v = u.

If this conjecture is true, the logic of logical necessity must be exactly Med:
for if A ∈ Med, then 2A is true in every Med-valuation, and thus in every
substitutional valuation. This implies that every substitution instance of A is
true in every valuation, and so A is valid.

There are several open questions concerning the logic Med. It is unknown,
for instance, whether it is recursively axiomatizable.26 If it turned out that
Med = S4MSub, this would provide an alternative route to determining Med
as the logic of logical necessity since,as we observed above, the validities are
sandwiched between these two logics.

4.2 Restricted substitution classes

Say that a set of substitutions, S, is a substitution class if it contains the
trivial substitution (mapping each sentence letter to itself), and is closed under
compositions of substitutions. Several early discussions, including McKinsey’s
original paper, focused on interpreting 2 in terms of a restricted substitution
class.27 When S is a substitution class, an S-valuation is then a function
v : L → {0, 1} that behaves classically with respect to the truth-functional
connectives, ∧ and ¬ (see definition 8) and is such that v(2A) = 1 if and only
if v(iA) = 1 for every substitution i ∈ S.

By limiting S to substitutions that replace letters with non-modal formula,
for instance, the problem of circularity discussed in the previous section is
avoided. Using the same sort reasoning, McKinsey was able to show that
every theorem of S4 is true in any S-valuation. However, this status does
not extend to M or Sub. In in establishing the validity of M and Sub in the

26It is not finitely axiomatizable; see Shehtman (1990).
27This may have been due to the difficulty of establishing the existence of any substitu-

tional valuations. See the discussion of p.169 of Humberstone (2016).
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full substitution class one must appeal to special features of that class—in the
former case, for instance, we appealed to the existence of a substitution that
mapped every letter to a tautology. Drake (1962) establishes that S4 is in fact
complete with respect to arbitrary S-valuations.

Various substitution classes have been studied. Humberstone (2016) con-
siders a propositional modal language with primitive logical constants ⊤ and
⊥, and restricts attention to the set of substitutions that map each letter to
itself, ⊤ or ⊥. Another natural substitution class consists of the substitutions
that map letters to 2-free formulas. In Bacon and Fine (2023), the logic of
various non-modal substitution classes are investigated and shown to be equiv-
alent to the logic of certain classes of Kripke frames. The two logics mentioned
above, for instance, can be distinguished by the presence (in the former case)
or absence (in the latter case) of the principle:

Grz 2(2(A → 2A) → A) → A

4.3 Other languages

While we have focused on propositional languages, it is possible to formulate
the substitutional constraint in richer languages.28 McKinsey’s original exam-
ples involved sentences in subject predicate form, and suggested that he was
thinking of substitutions as acting on these subsentential components. In this
setting the status of the necessity of identity and distinctness is somewhat
more subtle; and more discussion of these issues can be found in §6 of Bacon
and Fine (2023) and in §7.3 of Bevan (2022).

5 The Quantificational Constraint

In the early twentieth century, logicians began to employ a quantificational
account of logical truth. For instance, Bernays and Schönfinkel (1928) spell
out the notion of logical truth and logical consistency for first-order languages
in terms of truth simpliciter in a higher-order language: the logical truth of
∀x(Fx∨¬Fx) for them amounts to the mere truth of ∀F∀x(Fx∨¬Fx)—‘for
any property and any individual, that individual has the property or it does
not’—and the logical consistency of ∀xy(Rxy → Ryx) amounts to the truth
of ∃R∀xy(Rxy → Ryx).29 Tarski later turned this into an explicit definition

28The substitutional constraint in the first-order context is discussed in Bacon and Fine
(2023) section 6, and in Bevan (2022) section 7.3.

29See Bernays and Schönfinkel (1928), p347. This is essentially the same notion used
in Hilbert and Ackermann (1928)—the first modern logic textbook—although they also

19



of logical truth, any given instance of which is equivalent to the proposal in
Bernays and Schönfinkel.30

Given a language L, we can consider a higher-order language, L∀, ex-
tending L with higher-order quantifiers, ∀σ, that can bind into the position
of each type σ had by some non-logical constant. The logical truth of a
sentence A(c1, . . . , cn), where c1 . . . cn enumerate all of the non-logical con-
stants of various types, σ1, . . . , σn, appearing in A, amounts to the truth of
∀σ1x1 . . . ∀σnxnA(x1, . . . , xn), where each xi is a variable of the same logical
type as ci, namely σi. So the bridge principle now reads as follows:31

The Quantificational Constraint 2A(c1 . . . cn) is true if and only if ∀x1 . . . xn.A(x1, . . . , xn)
is true

Note that in the case where L is already a full higher-order language, both the
original sentence and its universalization belong to L, so that we can formulate
this as an object language biconditional:

2A(c1 . . . cn) ↔ ∀x1 . . . xn.A(x1, . . . , xn)

The construction of a model of this biconditional can be illustrated well-
enough in the simpler setting of propositionally quantified modal proposi-
tional logic.32 In this setting the constraint has the form 2A(p1, . . . , pn) ↔
∀x1 . . . xn.A(x1 . . . xn), where the pi are propositional letters, and the xi are
propositional variables. Consider the transitive reflexive Kripke frame consist-
ing of an infinite tree where each world has a countably infinite number of im-
mediate successors. We can interpret propositionally quantified modal logic in
this frame by interpreting the letters as sets of worlds, and letting the proposi-
tional quantifiers range over arbitrary sets of worlds (see Fine (1970)). Suppose

required that the first-order quantifiers be restricted by a predicate representing the domain
of quantification, which then also gets quantified out in the definitions of logical truth and
consistency. This way of defining logical truth features prominently in Williamson (2013),
under the label ‘metaphysical universality’.

30According to Tarski (1937) logical truth may be reduced to satisfaction: a sentence,
‘A(c1, .., cn)’, containing only the non-logical constants c1, . . . , cn, is a logical truth if and
only if ‘A(x1, . . . , xn)’ is satisfied by all assignments of values to x1 . . . xn (this will require
higher-order quantification unless the non-logical constants are all singular terms). In Tarski
(1931) Tarski also showed that satisfaction for formulas of any finite-order fragment of
higher-order logic can be reduced to pure higher-order logic.

31A related treatment of logical necessity is considered in Cocchiarella (1975) §4; there the
quantificational definition of logical truth is employed as a means of recursively paraphrasing
away the notion of logical necessity into a higher-order logic without any modal operators.

32A proof that this constraint is satisfiable in a full higher-order language is sketched in
Bacon (2020); the relevant lemmas are shown in Bacon (2023) chapter 18. The simpler
construction described here is from Bacon and Fine (2023) section 5.
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that A1, A2, . . . enumerate the formulas satisfiable in this frame,M1,M2, . . . the
interpretations of the letters that witness the satisfiability of these sentences,
and finally suppose we have similarly enumerated the immediate successors of
the root world w1, w2, . . .. We can make the formula An true at wn, since the
worlds accessible to wn under their natural order forms an isomorphic copy of
the whole frame, and so we can copy the interpretation of the letters found
in Mn on to this subframe. Using this strategy we can make every sentence
satisfiable in the whole frame true in some immediate successor of the the
root world. In the resulting model, A is satisfiable at the root of the frame,
if and only if 3A is true at the root. Because the propositional quantifiers
range over all sets of worlds, we also have that A is satisfiable if and only if
∃x1 . . . xn.A(x1, . . . , xn) is true at the root, securing the dualized version of the
quantificational constraint.

Much remains to be done. One outstanding question concerns which logics
the quantificational constraint is compatible with. The above model demon-
strates that one such logic is the logic of the infinite tree described above,
with respect to an unrestricted interpretation of the propositional quantifiers.
Another natural question concerns whether there is a substitutional interpreta-
tion of the higher-order quantifiers under which the quantificational constraint
is satisfied; this would provide an interpretation in which the quantificational
and substitutional constraints from section 4 are jointly satisfied.33
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nections between a forcing class and its modal logic. Isr. J. Math., 201:
617–651, 2015.

Herbert E. Hendry and M. L. Pokriefka. Carnapian extensions of S5. Journal
of Philosophical Logic, 14(2):111–128, 1985. doi: 10.1007/BF00245990.

D Hilbert and W Ackermann. Grundzüge der theoretischen logik. Julius
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