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A Preliminaries

A.1 Language

We work in a simply typed higher-order modal language: there are two base
types, e and t, and given any types σ and τ there is a functional type (σ → τ).
We omit type brackets when they are associated to the right, and will write
‘M : σ’ as short for ‘M is a term of type σ’ or ‘M , of type σ,’.

The terms of language are defined as follows. For each type σ, there
will be infinitely many variables of that type. We typically represent these
with upper and lower case letters towards the end of the latin alphabet, like
X, Y, Z and x, y, z. Occasionally we will use more suggestive names like ‘suc’
and ‘add’ for variables depending on their function. Whenever M is a term
of type σ → τ and N a term of type σ, (MN) is a term of type τ and
whenever M is a term of type τ and x a variable of type σ, (λx.M) is a term
of type σ → τ . Finally we have primitive terms for the logical constants:
∀σ : (σ → t) → t, →: t → t → t, and 2 : t → t. We may introduce
∃σ,⊥,∧,∨,↔,=σ as abbreviations in any of the standard ways. For instance,
⊥ may be identified with ∀(t→t)→t∀t, =σ with λxy∀σX(Xx → Xy).

We adopt some further conventions, following ?. We adopt infix notation
for the binary logical connectives and identity. λs immediately following a
quantifier are omitted. Given a term P : σ → t we write ∀P

σ for λX∀σx(Px →
Xx), and ∃P

σ for λX∃σx(Px∧Xx). We use x⃗ for sequences x1...xn. λx⃗, ∀x⃗ etc.
stand for strings of λs or quantifiers — e.g. the first amounts to λx1λx2 . . .

*...
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— and Rx⃗ stands for Rx1 . . . xn. σ⃗ → τ stands for σ1 → σ2 → . . . → τ .
M [N/x] is the result of replacing every free occurrence of v in M with N
provided no free variable in N becomes bound.

The languages we consider may contain further non-logical constants. As
usual logics and theories will be identified with sets of terms of type t.

A.2 Formalizing mathematical notions in higher-order
logic

3z⃗ := λRλz⃗.¬2¬Rz⃗ ⊆σ⃗:= λXY ∀σ⃗ z⃗(Xz⃗ → Y z⃗)
∼σ⃗:= λXY.(X ⊆σ⃗ Y ∧ Y ⊆σ⃗ X) ≤σ⃗:= λXY.2X ⊆σ⃗ Y
Rigσ⃗ := λX2∀σ⃗→tY (2∀Xσ⃗ z⃗.Y z⃗ ↔ ∀Xσ⃗ z⃗.2Y z⃗) Worldσ⃗ := λR(3σ⃗R ∧ ∀S(R ≤σ⃗ S ∨R ≤σ⃗ ¬σ⃗S)

Ub⪯ := λXy.∀z(Xz → z ⪯ y) Lub⪯ := λXy. ubXy ∧ ∀z(ubXz → y ⪯ z)
Domσ := λRx.∃σy.(Rxy ∨Ryx) Transσ := λR∀σxyz(Rxy ∧Ryz → Rxz)
Ancestσ := λSxy∀R(TransR ∧ S ⊆σ R → Rxy) Funσ := λS∀σxyy′(Sxy ∧ Sxy′ → y =σ y′)

F : X → Y := ∀Xx∃Y !y.Fxy F : X
1−1−−→ Y := ∀Xxx′y.(Fxy ∧ Fx′y → x = x′)

PO := λPR.PR is a partial order Lattice := λPR.P,R is a lattice
Compl := λPR.PR is a complemented lattice Dist := λPR.PR is a distributive lattice
BAσ := λPR.PR is a Boolean algebra CBAσ := λPR.PR is a complete Boolean algebra

Table 1: Abbreviations

In this section we show how to formalize various familiar mathematical
notions in higher-order logic. For the sake of readibility definitions will be
given in ordinary English, and we will only provide explicit definitions in the
language of higher-order logic when the required definition is not obvious.

We begin with some order-theoretic notions. A partial order at type σ
consists of a property, P : σ → t, and a relation ⪯: σ → σ → t which is
transitive, reflexive and antisymmetric with respect to the type σ entities
satisfying P . P entities are called elements in the partial order. A partial
order P,⪯ has meets and joins when any two elements have a greatest lower
bound and a least upper bound in the partial order, in which case we call
P,⪯ a lattice. A lattice is complete when for any property F there is a
greatest greatest lower bound and least upper bound of the F s in P . We will
sometimes write a ⊓ b and a ⊔ b for the (unique) meet and join of a and b:
note that in using this notation we are not treating ⊓ itself as a σ → σ → σ
term—rather a ⊓ b is a syntactically simple term introduced by existential
instantiation. A lattice is distributive when a ⊓ (b ⊔ c) and (a ⊓ b) ⊔ (a ⊓ c)
are the same. A Boolean algebra P,⪯ is a complemented distributive lattice:
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for every element, a, there is another element b such that a⊔ b is the greatest
element of the lattice and a⊓ is the least element. A well-order at type σ
is total partial order such for every property F : σ → t, if there are any F
elements, there is a ⪯-least F element. The ancestral of a relation R holds
between x and y when every transitive relation extending R holds between
x and y (Ancestral := λSxy∀R(TransR ∧ S ⊆σ R → Rxy)).

Given terms F : σ → τ → t, and X : σ → t, Y : τ → t, we write
F : X → Y to mean that F is a functional relation between X and Y : every

X bears F to a unique Y . F : X
1−1−−→ Y means that this relation is one-one:

no two Xs bear F to the same Y , and F : X
onto−−→ Y means that it is onto:

for any Y there is some X that bears F to that Y , and F : X
bij−→ Y if it

is both one-one and onto. We use ‘P’ to stand for a sequence of variables
‘P : σ → t,⪯P : σ → σ → t’ and ‘Q’ for ‘Q : τ → t,⪯Q: τ → τ → t’. If
P and Q are partial orders, then we write P ∼= Q iff the partial orders are

isomorphic: there exists F : P
bij−→ Q such that for any whenever Fxx′ and

Fyy′, x ⪯P y if and only if x′ ⪯Q y′.
A natural number structure at type σ consists of an entity 0 : σ, and a

functional one-one relation suc : σ → σ → t such that: nothing bears suc to
0, and moreover, any relation with 0 in its field that relates x toy y when x
is in its field and sucxy, contains suc: ∀R(DomRz ∧∀x(DomRx∧ sucxy →
Rxy) → ∀xy(sucxy → Rxy)). A first-order natural number structure con-
sists of the above, and additionally relations +,×, < such that .

+ := λnmk.∀R(Rn0n ∧ ∀ii′jj′(suc ii′ ∧ suc jj′ ∧Rnij → Rni′j′) → Rnmk)

× := λnmk.∀R(Rn00∧ ∀ii′jj′(suc ii′ ∧ addnjj′ ∧Rnij → Rni′j′) → Rnmk)

<:= λnm.∀R(∀ij(suc ij → Rij) ∧ ∀ijk(Rij ∧Rjk → Rik) → Rnm)

The domain of a natural number structure is the field of <. We will write
N to abbreviate a sequence of variables z : σ, S : σ → σ → t and we write
Natσ N for the statement that z and S together form a natural number
structure at type σ; the same notation will be adopted for first-order natural
number structures.

A real number structure at a type σ consists of a total partial order
property R : σ → t,⪯, elements 0, 1 : σ and ternary relations +,× : σ →
σ → σ → t that are functional with domain R representing addition and
multiplication. We will write x+y as short for the description for the unique
z such that +xyz, and similarly for ×. Addition and multiplication are

3



commutative and associative and distributive in the sense that x× (y+ z) =
(x × y) + (x × z). 0 and 1 are the units of + and × respectively (e.g.
∀σx(+x0y → x = y), and every element of R has an additive inverse and
every element apart from 0 has a multiplicative inverse—i.e. for each x there
is a y such that x+y = 0 and for each x ̸= 0 there is a y such that x×y = 1.
Moreover if x ⪯ y then x+z ⪯ y+z and if 0 ≤ x and 0 ≤ y, 0 ≤ x×y. Finally
it is complete: for any property of elements F that has an upperbound in R
has a least upperbound. A first-order real number structure consists of the
preceding along with a predicate N such that

N := λx.∀F (F0 ∧ ∀y(Fy ∧ ∀z(+x1z → Fz) → Fx)

We will write R for a sequence of variables R,N,+,×, 0, 1, < of the appropri-
ate types. We write Realσ R to say that they form a real number structure.

Next some modal notions. A proposition, property or relation P of type
σ⃗ → t is possibleσ⃗ when it is possible that there exist entities x⃗ that in-
stantiate P ; P is necessary in the dual case. We say that P entails Q,
when λz⃗(Rz⃗ → Sz⃗) is necessaryσ⃗. A world proposition (property, relation)
is something that is possible, and such that, for any other proposition (prop-
erty, relation), it entails it or its negation. A property (relation) X is rigid
iff the X restricted quantifiers necessarily satisfy the Barcan formula and its
converse: Rigσ⃗ := λX2∀σ⃗→tY (2∀X

σ⃗ z⃗.Y z⃗ ↔ ∀X
σ⃗ z⃗.2Y z⃗).

Quantification over “natural number structures” is strictly speaking a
sequence of universal quantifiers, one for each element of the signature of a
natural number structure. Thus we will need some notation for representing
such sequences.

� We useN for a sequence of variables with the following types 0 : σ, suc :
σ → σ → t.

� We use R for a sequence of variables with the following variables R,N :
σ → t,+,× : σ → σ → σ → t, 0, 1 : σ,<: σ → σ → t,.

� We use N for the canonical natural number structure: the sequence of
terms NumQuant, 0Q, sucQ, <Q,+Q,×Q defined above.

� We use R for the canonical real number structure: sequence of terms
given in theorem A.2 below.
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PC ⊢ A whenever A is a tautology.

UI ⊢ ∀σF → Fa.

β A[(λx.M)N ] ↔ A[M [N/x]].

η A[λx.(Fx)] ↔ A[F ], where x is not free in F .

K 2(A → B) → 2A → 2B

MP If ⊢ P and ⊢ P → Q, then ⊢ Q.

Gen If ⊢ P → Q, and v is not free in P , ⊢ P → ∀vQ.

Nec If ⊢ A then ⊢ 2A

Figure 1: The Background Logic, H2

RC ∀σ⃗→tR∃σ⃗→tX.(RigX ∧R ∼σ⃗ X)

B 2∀tp(p → 23p)

LB ∀σ⃗→tP (3σ⃗P ↔ ∃σ⃗→tW.(Worldσ⃗ W ∧W ≤σ⃗ P ))

MP ∀B(SmallCBAσ B → ∃tP.(B ∼= P ∧ P ̸=t ⊤))

Figure 2: Key Modal Principles

A.3 Logical systems

Here we state some logics of interest. The minimal system H2 is presented in
figure 1. We adopt the usual notation from modal logic for modal principles:
T := 2∀tp(2p → p), 4 := 2∀tp(2p → 22p) and B := 2∀tp(p → 23p).

To H2 we can add further principles, listed in figure 2, which we denote
by appending their names separated by a dot—e.g. H2.5 for adding T, 4 and
B, H2.5.RC including RC, etc.

In the statement ofMP, B stands for a pair of variablesB : σ,⪯: σ → σ →
t and P for P : t,≤, recalling that ≤ is defined as λpq.p ∧ q = p. SmallCBA
is the property of being a complete Boolean algebra whose cardinality is no
bigger than the number of propositions.
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Throughout we will appeal to couple of facts that may be derived in these
systems about the existence of natural and real number structures. First we
define what we will call the canonical natural number structure, consisting of
the cardinality quantifiers:

0Q := λX.⊤
sucQ := λQλX.∃y.(Xy ∧Qλz(Xz ∧ z ̸= y)

NumQuant := λQ∀Z((Z0 ∧ ∀P (ZP → Z(sucP )) → ZQ)

<Q := λPQ∀Z(Z0(suc 0)∧
∀P ′Q′(ZP ′Q′ → (ZP ′ sucQ′ ∧ Z sucP ′ sucQ′)) → ZPQ)

+Q := λxyz.∀R(∀w(Rw0w ∧ ∀uv(Rwuv → Rw(sucu)(suc v))) → Rxyz)

×Q := λxyz.∀R(∀w(Rw00 ∧ ∀uv(Rwuv → Rw(sucu)(add vw))) → Rxyz)

Let the axiom of potential infinity be the following principle:1

Potential Infinity ∀Q(NumQuantQ → 3Q(λx.⊤))

Theorem A.1. Given the axiom of Potential Infinity (in H2), the canonical
natural number structure is indeed a natural number structure.

Second we will appeal to the fact that, given the axiom of Potential In-
finity, and one of several auxiliary assumptions, there exists a real number
structure that can be constructed from the canonical natural number struc-
ture, and consists of properties of finite numerical quantifiers. We call this
the canonical real number structure. The definition of this structure, and
the proof that it is a real number structure is rather involved. It exploits
the non-obvious, but well-known, fact that you can define operations on the
powerset of natural numbers that turns it into a into a complete ordered
field.

There is a slight wrinkle with transposing the set-theoretic construction
to the higher-order framework: sets, unlike properties, are individuated ex-
tensionally. We cannot, then, straightforwardly identify reals with properties
of naturals since there would be many coextensive properties corresponding
to any given real. There are several work arounds. If we have Rigid Compre-
hension, we can identify reals with rigid properties of naturals, since these
are individuated extensionally. Without Rigid Comprehension we don’t have
any guarantee that there are enough rigid properties to play the role of all

1cf. ?, ?.
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the reals. However, if we have the well-ordering principle or some similar
choice principle we can instead pick a particular property from in a given
equivalence class of coextensive properties to be a representative of a given
real.

The Well-ordering Principle ∃R.WOR ∧DomR ∼ λx.⊤

Thus we have:

Theorem A.2. Given the axiom of Potential Infinity, and either Rigid Com-
prehension or the Well-Ordering Principle (in H2), it is possible to construct
a real number structure at the type σ → t, where σ = (e → t) → t the type of
quantifiers. Moreover, it is possible to do so in such a way that every prop-
erty of canonical natural numbers is coextensive with exactly one element of
the real number structure.

There is one final work around that requires no additional assumptions
beyond Potential Infinity. We can define a quasi-real number structure as
consisting of the same data as a real number structure with the addition
of an equivalence relation ≈ to represent identity: so that we have R,N :
σ → t, +,× : σ → σ → σ → t, 0, 1 : σ, <,≈: σ → σ → t. We then
require the operations +, <,×, R,N to respect the notion of identity in the
sense that, e.g., if +abc and a ≈ a′, b ≈ b′, c ≈ c′ then +a′b′c′. We also
modify the conditions for being a complete ordered field by substituting
all occurrences of = with ≈, so that, for instance, the commutativity law
becomes +abc ∧ +bac′ → c ≈ c′. The notion of an isomorphism between
quasi-real number structure is now a (possibly non-functional) relation which
preserves ≈ and the other field operations. Quasi-real number structures can
be constructed, without additional assumptions, from properties of canonical
natural numbers using coextensiveness as the notion of identity. Note that
every real number structure is automatically a quasi-real number structure
with ≈:==σ. Appeals to theorem A.2 can be substituted to appeals to the
existence of quasi-real number structures in this paper, but in the contexts
we need canonical real number structures we will always either have Rigid
Comprehension or a well-ordering available.
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B Consistency proofs

B.1 Model of Classicism with first-order arithmetical
contingency

Here we prove

Theorem B.1. There is a first-order arithmetical sentence, A(0, suc, <, add,mult)
and a model of Classicism (H with S4 and Intensionalism) which is struc-
turally contingent. I.e. the model makes

3∃X(Nat(X) ∧ A(X)) ∧3∃X(Nat(X) ∧ ¬A(X))

true.

The proof uses methods described in ?. There is described a class of
“modal models” which is sound and complete with respect to Classicism.
Among these are models are “extensionally full” models, which have, for
every subset of their domain, a property that has that subset as its extension,
and satisfies similar conditions for relations. Extensionally full models with
an infinite type e domain are arithmetically standard in the following sense.

Definition B.1. M is arithmetically standard iff M |= ∀X(NatX → A(X))
if and only if A(0, suc,+,×, <) is an arithmetical truth.

Here we use the expression M |= A to mean that the sentence A is true
in the model M . We have, by Proposition 18.7 and Corollary 18.4 ? the
following fact:

Theorem B.2. Given any set of modal models, C, there is an arithmetically
standard modal model M such that, whenever N ∈ C, N |= A where A is
closed, M |= 3A.

We may construct a model of first-order arithmetical contingency as fol-
lows. Let us first find an arithmetical truth, A, whose structural translation,
∀X(NatX → A(X)), cannot be derived in Classicism. The consistency state-
ment for Classicism would do. By the completeness theorem there is a modal
model N of ∃X(NatX∧¬A(X)). Let C = {N}: by theorem B.2 above there
is an arithmetically standard modelM such thatM |= 3∃X(NatX∧¬A(X)).
Moreover M |= ∃X(NatX ∧ A(X)). For an arithmetically standard model
must make ∃XNatX—⊥ is not an arithmetical truth, so M ̸|= ∀X(NatX →
⊥)—and ∀X(NatX → A(X)) since A is an arithmetical truth. M is a model
of 3∃X(Nat(X) ∧ A(X)) ∧3∃X(Nat(X) ∧ ¬A(X)) as required.
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B.2 Model of Classicism, S5, RC and first-order ana-
lytic contingency

We would like to construct a model of the following two claims:

3∃R(RealR ∧ CHR)

3∃R(RealR ∧ ¬CHR)

where CH is:

λR(∀X ⊆ R(∃F : R
1−1−−→ X ∨ ∃F : X

1−1−−→ N))

Here R is short for the sequence of variables R,N, 0, 1, add,mult, <, with R
a unary predicate representing the reals of the structure and N representing
the naturals.

Below we construct a set-theoretic model, in a background of ZFC+CH,
and offer a sketch of proof that it satisfies the desired properties. Create a
full functional model as follows.

� P := the disjoint sum of the partial order ({p | p is a finite partial
function from ω2 × ω to 2},⊇) and ({@}, {(@,@)}).

� B := RO(P), the regular open subsets of P.

� Dt = B× 2.

� De = ω

� Dσ→τ = DτDσ

� ∀σ given by meet in the Boolean algebra, similarly for the logical con-
nectives.

B is a complete Boolean algebra. Intuitively it consists of a solitary atom,
{@}—which will serve as our actual world—and then a large atomless false
proposition P := P \ {@}. We will show that according to this model “there
exists a real structure in which CH true” is true at the actual world, but
false throughout the atomless portion of logical space. We will use

d
and⊔

to denote the meets and joins of elements in this algebra, and pc for the
complement of p. Observe that B has the countable chain condition: every
set of consistent pairwise incompatible elements in B is countable.

The meanings of terms are computed relative to variable assignments g,
which map each variable of type σ to an element of Dσ:
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� JxKg = g(x)

� JMNKg = JMKg(JNKg)

� Jλx.MKg = a 7→ JMKg[a/x]

� J∀σK = f 7→
d

a∈Dσ f(a)

� J→K = p 7→ q 7→ (pc ⊔ q)

A formula A is satisfied by g iff @ ∈ JAKg.
We assume, for simplicity, we are working in a language with a constant

of type σ for every element of Dσ. If we also play loose with use and mention
(or let the elements of Dσ be their own names), this eliminates various bits
of fussing involving variable assignments—we can write JA(a1, ..., an)K where
ai ∈ Dσi instead of JA(x1, ..., xn)Kg where g is a variable assignment mapping
xi to ai.

Next we appeal to theorem A.2 which guarantees that, given the well-
ordering principle, we can construct a canonical real number structure whose
elements are properties of natural numbers, and which includes at least one
such property with any given extension on the natural numbers. In the
present setting we get the following.

Lemma B.1. Suppose Jr is a well-orderingK = ⊤, and let σ = e → t. Then
there exists terms, R := R,N : σ → t, 0, 1 : σ,+,× : σ → σ → σ → t, <:
σ → σ → t each in a single parameter r, corresponding to reals, naturals,
operations of addition and multiplication, 0, 1 such that JRealRK = ⊤ and
J∀e→tX∃e→tY (RY ∧X ∼ Y )K = ⊤.

In order for this construction to work we need to check that such an r
exists:

Lemma B.2. The Well-Ordering Principle, WOσ, is necessarily true in M .
Indeed, there is a particular element of the model, r ∈ Dσ→σ→t, such that Jr
is a well-orderK = ⊤.

Proof. It is sufficient to find a relation, r ∈ Dσ→σ→t, such that the semantic
value of “r totally orders type σ and is well-founded” in M is ⊤.

Let < be some well-order on Dσ, we may define r as

r(a)(b) =

{
⊤ if a < b

⊥ otherwise
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It is easily seen that Jr is a total orderK = ⊤. It remains to show that
Jr is well-foundedK = ⊤. It suffices to show J∃y.fyK ≤ J∃y.y is f and r-minimalK
for every f ∈ Dσ→t.

Let f ∈ Dσ→t. If J∃y.fyK = ⊥ we are done. If J∃y.fyK ̸= ⊥, it suf-
fices to show that for every b ≤ J∃y.fyK there is some a ∈ Dσ such that
Ja is f and r-minimalK ⊓ b ̸= ⊥.

Since J∃y.fyK ̸= ⊥, there exists a d ∈ Dσ with JfdK ⊓ b ̸= ⊥. Let a be
a <-minimal element with this feature. Suppose ⊥ < b′ ≤ f(a) ⊓ b, and
d ∈ Dσ with b′ ≤ JfdK. Then JfdK ⊓ b ̸= ⊥ so r(a)(d) = ⊤ or a = d by the
minimality of a, so Jrad∨a = dK = ⊤. Since d ∈ Dσ was arbitrary, f(a)⊓b ≤
J∀σy(fy → ray∨a = y)K. This means f(a)⊓b ≤ Ja f and r-minimalK⊓b ̸= ⊥
as required.

First we show that 3∃R(RealR ∧ CHR) is true in the model. Indeed
∃R(RealR ∧ CHR) is true in the model (i.e. holds at @) for we know from
lemma B.1 that there are elements of the model, R, such that JRealRK = ⊤.
But it can also be shown that that the truth of CH is “absolute” in the
model.

Lemma B.3. ∃R(RealR∧CHR) is true in M if and only if the continuum
hypothesis is true.

M is extensionally full in the sense of ? appendix A4: for any subset
X ⊆ Dσ there is an element f ∈ Dσ→t such that for all a ∈ Dσ, @ ∈ JfaK if
and only if a ∈ X. Thus in extensional contexts quantification over properties
in the model is equivalent to quantification over sets in the metalanguage.
This can be used to show that counterexamples to the higher-order version
of CH in the model would be counterexamples to the set-theoretic continuum
hypothesis and conversely.

Next we show that 3∃R(RealR ∧ ¬CHR) is true in the model. In fact
P ≤ J∃R(RealR∧¬CHR)K where P is the atomless portion of logical space,
P \ {@}.

Lemma B.4. The the semantic value of “there is a real number structure
R, . . . at type e → t and an uncountable property of those reals which the
reals cannot inject into” is the worldless portion of logical space P .

Proof. Our strategy is to use lemma B.1 to find a real number structure
R = R,N, . . . made of properties of natural numbers, and then show that P
entails that it does not satisfy CH.
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For each α < ω2 we define we define some special properties of natural
numbers, aα ∈ De→t, as follows

aα(x) = {p ∈ P | p(α, x) = 1}

Intuitively the aα are highly contingent properties of natural numbers that
are nonetheless necessarily coextensive with some R property, and necessarily
no pair of them are coextensive.

Now to define the counterexample to the continuum hypothesis, G. In
the worldless regions of logical space, G is uncountable and R cannot be
injected into G. G : De→t → Dt

G(a) =

{
⊤ if a = aβ for some β < ω1

⊥ otherwise

Now, let c′ ∈ D(e→t)→(e→t)→t be the relation necessarily relates each property
(element of Dσ→t) to the minimal such element coextensive with it, obtained
from lemma B.1 (i.e. c′ with Jc′ is a choice relation for ∼K = ⊤). We can
define c(a)(b) = Ja ∼ bK when b = aα for some α and = c′ab otherwise— it is
easily seen that Jc is a choice relation for ∼K ≥ P . By lemma B.1 we have a
real structure R, in the parameter c such that J∀X∃Y (X ∼ Y ∧ RY )K = ⊤
and JRaαK = ⊤ for every α < ω2.

We first show that for any g ∈ D(e→t)→(e→t)→t, Jg : R
1−1−−→ GK ⊆ {@}—i.e.

g is not injective from R to G at the worldless portion of space. Suppose

otherwise, for contradiction. So b := Jg : R
1−1−−→ GK) ⊓ P > ⊥ (we add the

conjunct so that we can effectively ignore what g is like at the only world in
the algebra). Using the axiom of choice, we may define a function f : ω2 → ω1

that maps each α < ω2 to a β which might enumerate a real number that is
G.

f(α) = β where JgaαaβK ⊓ b > ⊥

We first show that f : ω2 → ω1, as claimed. Since b ≤ Jgaαaβ → GaβK (i.e. b
contains the claim that g has codomain G), and since Gaβ = ⊥ when β ≥ ω1,
b ≤ J¬gaαaβK when β ≥ ω1, i.e. JgaαaβK ⊓ b = ⊥ and so no β ≥ ω1 is in the
range of f . Thus f : ω2 → ω1.

Now pick some γ < ω1 such that f−1(γ) is uncountable. There must be
such a γ since ω2 > ω1. Now consider the following set:

{JgaαaγK ⊓ b | f(α) = γ}

12



The elements of this set are all non-zero (by the definition of f), pairwise
incompatible (by the fact that b ≤ Jg is injectiveK), and uncountable by our
choice of γ. We then have an uncountable anti-chain in B which is not
possible.

To show that JG is uncountableK we use a similar strategy, this time
finding an injective f : ω1 → ω for the contradiction.

C Derivations

C.1 Proof that there is no first-order arithmetical con-
tingency in H2.5

Proposition C.1 (Prior). The necessity of distinctness, and the Barcan and
converse Barcan formulas at any type are derivable in H2.5.

The first is proved in ? pp.206-207. Essentially if 3x = y then, by 2(the
Necessity of Identity) we can infer32x = y from which we obtain x = y. The
necessity of distinctness follows from the contrapositive of 3x = y → x = y.
The second result is also due to Prior–see ?.

Under the assumption that there is a natural number structure of individ-
uals, the finite numerical quantifiers form a natural number structure with
respect to the following definitions

Proposition C.2. In H2.5 we can derive the following

1. Being a numerical quantifier, NumQuant, is rigid.

2. The relations <Q,+Q,×Q on the numerical quantifiers are rigid.

Proof. In S5, rigidity of a relation R is equivalent to showing (i) ∀x⃗(Rx⃗ →
2Rx⃗). For (i) implies (ii) ∀x⃗(¬Rx⃗ → 2¬Rx⃗), and we can establish rigidity as
follows. For any relation Z, we have by the Barcan and converse Barcan for-
mulas 2∀x⃗(Rx⃗ → Zx⃗) ↔ ∀x⃗2(Rx⃗ → Zx⃗). But given (i), and the K axiom,
the right-hand-side implies ∀x⃗(Rx⃗ → 2Zx⃗). And given (ii), ∀x⃗(Rx⃗ → 2Zx⃗)
implies the right-hand-side. Thus 2∀x⃗(Rx⃗ → Zx⃗) ↔ ∀x⃗(Rx⃗ → 2Zx⃗). We
can then apply universal generalization and necessitation to this argument,
to obtain the statement that R is rigid.
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So now we prove that every numerical quantifier is necessarily a numer-
ical quantifier by induction. Let Z be the property of necessarily being a
numerical quantifier: λQ.2NumQuantQ. We will show that Z applies to 0
and is closed under suc. From the definition of a numerical quantifier that
every numerical quantifier has Z.

For the base case note that it is a trivial logical truth that every property
that applies to 0 and is closed under suc applies to 0, so this logical truth is
necessary. Thus we have 2Quant 0.

For the inductive step, assume that ZQ, i.e. Q is necessarily a numerical
quantifier. It follows that it’s necessary any property that applies to 0 and is
closed under suc applies to sucQ; i.e. it’s necessary that sucQ is a numerical
quantifier.

The proof of the rigidity of <Q,+Q and ×Q are similar. For the case of
<, the base case consists in showing 20 < suc 0 and the inductive step, that
if 2Q < P then also 2 sucQ < sucP and 2Q < sucP .

Lemma C.1. In H2.5, we can prove ∀Q⃗(NumQuant Q⃗ ∧ A† → 2A†) and

∀Q⃗(NumQuant Q⃗ ∧ ¬A† → 2¬A†) for any first-order arithmetical sentence
A.

Proof. We prove this by induction on first-order arithmetical sentences. The
base cases Q = P and Q < P follow by propositions C.2 and C.1.

The inductive cases for the truth functional connectives are straightfor-
ward. The quantificational case follows from the rigidity of NumQuant.

Lemma C.2. In H2.5 if there is a natural number structure of individu-
als, then, necessarily, 0, < is a natural number structure on the numerical
quantifiers.

Theorem C.1. In H2.5, there is no structural arithmetical contingency:

∀N(Nat(N) ∧ A(N) → 2∀Ry(Nat(N) → A(N)))

where A(<, 0) is an arithmetical sentence.

Proof. Suppose that N is a natural number structure and A(N). Since there
is a natural number structure, the axiom of Potential Infinity holds, so we
know that the canonical number structure N, consisting of numerical quan-
tifiers, forms a natural number structure. Since A(N), A†(N) by Dedekind’s
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theorem. So by Lemma C.1 2A†(N). Since, given S5, the axiom of poten-
tial infinity is necessarily true if true at all, N is necessarily natural number
structure. So we know that necessarily any natural number structure N at
type e will be isomorphic to N and also make A(N) true.

C.2 Proof of no second-order analytic contingency given
2RC and LB

Recall that we use R as short for a sequence of variables R,N : σ → t,+,× :
σ → σ → σ → t, 0 : σ, 1 : σ. We will write ‘x is an element of the structure
R’ in the exposition to mean Rx.

Here will prove the following theorem.

Theorem C.2. In H2.2RC.LB one can derive all instances of The Neces-
sity of Analysis in the language of second-order analysis. Whenever A is a
sentence of second-order analysis:

2∀X(RealX → A(X)) ∨2∀X(RealX → ¬A(X))

The formulas of second-order logic (relative to type σ) are defined as
follows

� The formulasXy1 . . . yn are second-order analytical formulas when x, y, z :
σ and X : σ → . . . → σ → t.

� If A and B are second-order then A ∧B and ¬A are too.

� If A is second-order, then ∀x(Rx → A) is too.

� If A is second-order, then ∀X(∀x⃗(Xx⃗ →
∧

i Rxi) ∧ RigX → A) is to.

Note that there is a copy of second-order logic for any choice of σ, although
it is typically assumed that σ = e. Given a choice of variables R = R,N :
σ → t,+,× : σ → σ → σ → t, 0 : σ, 1 : σ, we say that a formula is a formula
of second-order analysis iff it is second-order and R appear free, and is a
sentence of second-order analysis iff its free variables are exactly R.

Observe that the second-order quantifiers are restricted to rigid prop-
erties. This is in line with standard mathematical practice, which treats
second-order logic as extensional. However, in the presence of Rigid Com-
prehension, one could drop the restriction to rigid properties without making
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a difference to the truth of any formula of second-order analysis. A straight-
forward induction shows that formulas of second-order analysis cannot dis-
tinguish between coextensive properties:

Proposition C.3 (Analytic Extensionality). In H2 one can derive ∀z⃗(Xz⃗ ↔
Y z⃗) → A → A[Y/X] for any second-order analytical formula A

This fact does not extend to arbitrary formulas of higher-orderese, since
in the full language one can formulate intensional notions, such as property
identity, which are not part of the language of second-order analysis.

First, a few remarks on the proof strategy. A more straightforward version
of the proof to follow is possible if we make the assumption of the necessity
of distinctness. First show that the rigidification, R, of any real number
structure, obtained by rigidifying R, N , +, × and <, is necessarily a real
number structure. Then we can show, using the Leibniz Biconditionals, that
any sentence about the reals that is true in a rigid real number structure is
necessarily true in that structure. It follows by Huntington’s theorem that,
necessarily, any real number structure is isomorphic to R, and so makes true
anything that R actually makes true.

In the absence of the necessity of distinctness, a rigid real number struc-
ture could fail to be a real number structure (if, say, everything in its domain
became identical). It will be convenient to use a restricted notion of necessity
in this argument defined as

2N := λp.2(3∃N.NatN → p)

Using ‘necessary’, ‘possible’, ‘rigid’, ‘inflexible’ and so on in this new sense,
the rigidification of the canonical real number structure will be inflexible
due to the fact that it is built out of numerical quantifiers which are 2N-
necessarily distinct. Now we can show that any given real number structure
is isomorphic to an inflexible real number structure (the canonical reals), and
then proceed as above. We will call a structureR rigid whenR,N,+,×, < are
rigid, and inflexible when additionally, ∀xy(Rx → 2Nx ̸= y), here defining
these modal concepts in terms of 2N. Note, also, that if R is rigid with
respect to 2 it is also rigid with respect to 2N, so that Rigid Comprehension
implies the variant of that principle involving 2N.

Once we have shown that the rigidification of the canonical real number
structure is inflexible, we show that inflexible real number structures are
necessarily complete, and consequently that they are necessarily real number
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structures (it is of course necessarily an ordered field). This will involve the
Leibniz biconditionals.

First, we will need a consequence of Huntington’s theorem, that no two
real number structures (potentially at different types) can disagree about the
truth of second-order analytic statements.

Lemma C.3. For any second-order analytic statement, A, 2∀σR∀τS(Real
σ(R)∧

Realτ (S) → (Aσ(R) ↔ Aτ (S))

Here Aσ and Aτ are obtained by shifting which type is playing the role of
“first-order” variables to σ. We omit the proof. Note that, like Analytic Ex-
tensionality, this theorem does not extend to arbitrary formulas, such as those
involving intensional notions, second-order identity or third-order quantifi-
cation. For instance, one real number structure may consist of necessarily
distinct elements, while an isomorphic one might not; second-order identity
and third-order quantification allow one to construct similar examples.

Next we need to construct an inflexible real number structure—note that
we require only inflexibility with respect to 2N. We will use the canonical
real number structure obtained from theorem A.2, where we identify reals
with rigid properties of the canonical natural number structure (using Rigid
Comprehension). The result of rigidifying this structure we will call R =
R,N,+R,×R, 0R, 1R, <R.

While this structure is clearly rigid, it needs to be shown that it is inflex-
ible and 2N-necessarily a real number structure. (Note that the canonical
real number structure itself is 2N-necessarily a real number structure, by
applying theorem A.2 and the fact that the axiom of Potential Infinity is
2N-necessary, but we don’t know that the canonical real number structure
is rigid.) Why is it inflexible? Because the numerical quantifiers are nec-
essarily distinct with respect to 2N the reals—rigid properties of numerical
quantifiers—will also be necessarily distinct in the same sense. Of course,
without the assumption of Potential Infinity, the numerical quantifiers may
not in fact form a natural number structure, and R may not be a real number
structure. Thus we should have:

Lemma C.4. If the axiom of Potential Infinity holds, then R is an inflexible
real number structure.

Note that if there could have been a real number structure then the axiom
of Potential Infinity is true, and if there couldn’t have been a real number
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structure the necessity of analysis holds vacuously. While the above lemma
doesn’t use Rigid Comprehension, we needed it in our definition of R. Next
we show that R is necessarily a real number structure.

Lemma C.5 (Leibniz Biconditionals). If the axiom of Potential Infinity
holds, then R is 2N-necessarily a real number structure.

Proof. We first show that if R is a rigid property of necessarily distinct
individuals, ∀xy(Rx ∧ Ry ∧ x ̸= y → 2Nx ̸= y), then for any element z
or R, λx.z < x and λx.x < z are rigid. Suppose 3N∃x(z′ < x ∧ Fx). So
3N∃xz′(x < z′∧ z = z′∧Fx), which by rigidity implies ∃xz′.x < z′∧3N(z =
z′∧Fx). Finally, by the necessity of distinctness, z′ = z, so ∃x.x < z∧3NFx.
For the other direction, we know that if for some x, z < x ∧3NFx then it’s
necessary that z < x by rigidity, so 3N(z < x ∧ Fx), and so also 3N∃x(z <
x∧Fx) applying existential generalization under 3N. This reasoning is easily
necessitated establishing the rigidity of λx.z < x. The other case is shown
similarly.

Let P be the higher-order property of being a collection or reals that has
no least upperbound:

P := λX.(X ⊆ R ∧ ¬∃y. lub yX)

Suppose, for contradiction, thatR is possibly not complete, that is: 3N∃e→tX.PX.
By the Leibniz biconditionals there is a world property W , that entails P .
Now we may consider the property of being a real x such that W entails
applying to x—informally, x would have fallen into the unique W collection
of properties if W had been instantiated.

Y := λx.2N∀X(WX → Xx)

By the rigidity of ≤, Y consists of only reals (if Y x, W entails λX(Xx∧PX),
to so x is possibly an ≤-real—i.e. stands in ≤ to something—and so by
rigidity there is something it ≤s). By the actual completeness of R, Y has
a least upperbound, z. We will show that necessarily, z is the least upper
bound of the unique property of reals X that has W , if it exists.

First, we establish that z necessarily an upperbound any X that is W .
2N∀X(WX → z ≥ X) writing z ≥ X for ∀x(Xx → z ≥ x). Suppose
otherwise, for contradiction: 3N∃X(WX ∧∃x(Xx∧x > z)). Applying some
logic inside 3N, 3N∃x > z(∃X(WX∧Xx). Applying the rigidity of λx.x > z
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we get ∃z > x3N∃X(Wx ∧Xx). Since W is a world property, it cannot be
consistent with Xx unless it entails it: so 2N∀X(WX → Xx) which means
Y x by definition of Y . The fact that x > z contradicts the assumption that
z is an upperbound of Y .

Next we establish that necessarily z is the least upperbound of the X
that is W , when such an X exists. 2N∀X(WX → lub zX). Suppose for
contradiction that 3N∃X(WX ∧ ∃x ≥ X.x < z)). Applying logic under
3N, 3N∃x > z∃X(WX ∧ x ≥ X). By the rigidity of λx.x < z, we have
∃x < z3N∃X(WX ∧ x ≥ X). To complete the contradiction it is sufficient
to show that x ≥ Y , contradicting the assumption that z was the least
upperbound. So suppose Y y, which means 2N∀X(WX → Xy). It follows,
using the normality of 2N, that 3Nx ≥ y. Given the necessity of distinctness,
we can infer that in fact x ≥ y (for otherwise x ≤ y and x ̸= y, and these
must be necessary given the rigidity of ≤ and the necessity of distinctness,
which is incompatible with 3Nx ≤ y). Thus x ≥ Y .

Lemma C.6 (Rigid Comprehension). Let W be a world property of type
(σ → t) → t, and Z : σ → t a rigid property. Then if it possible that W is
instantiated by a rigid property ⊆ Z, then there is an actual rigid property
that could have been identical to the W property:

2N∀Y (WY → (Rig Y ∧Y ⊆ Z)) → ∃X(RigX∧X ⊆ Z∧2N∀Y (WY → Y = X)

Proof. Suppose that 2N∀Y (WY → (Rig Y ∧ Y ⊆ Z)), and Z is the rigid
property given by the assumption. Let X be the rigid property coextensive
with λx.(Zx ∧ 2N∀Y (WY → Y x). Clearly X is necessarily rigid, and X ⊆
Z. It suffices to show that W entails being coextensive with X, since W
entails rigidity and coextensive rigid properties are identical. There are two
inclusions to show.

In order to show that 2N∀Y (WY → X ⊆ Y ) it suffices to show

∀x(Xx → 2N∀Y (WY → Y x))

since by the rigidity of X, we can conclude 2N∀Y (WY → ∀x(Xx → Y x)).
So let x be an arbitrary X. By the definition of X it follows that that
2N∀Y (WY → Y x), so the claim follows.

In order to show that 2N∀Y (WY → Y ⊆ X) it suffices to show

∀x(Zx → 2N∀Y (WY → Y x → Xx)
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since by the rigidity of Z, we can conclude 2N∀Y (WY → ∀x(Zx → Y x →
Xx)), which is equivalent to the desired claim, since 2N∀Y (WY → ∀x(Y x →
Zx)). So let x be an arbitrary Z. In the case that x is X, we also have 2NXx
by rigidity of X, delivering the desired result, 2N∀Y (WY → Y x → Xx).
In the case that x is not X, that means ¬2N∀Y (WY → Y x) or ¬Zx. In
fact, the first disjunct must be true, for if 2N∀Y (WY → Y x) but ¬Zx we
have have 3NZx since 2N∀Y (WY → Y ⊆ Z), which contradicts the rigidity
of Z. In the former case, the worldliness of W implies 2N∀Y (WY → ¬Y x)
yielding the desired result.

Now we can establish:

Lemma C.7 (Rigid Comprehension, Leibniz Biconditionals). Let R be any
inflexible real number structure (e.g. as constructed above). For every second-
order analytic statement, A(R), with free first-order variables x⃗ = x1, . . . , xn

and free second-order variables X⃗ = X1, ..., Xk:

∀X⃗∀x⃗((Rx⃗ ∧ X⃗ ⊆ R ∧ Rig X⃗) → A → 2NA)

where above we write Rx⃗ for Rx1 ∧ . . . ∧ Rxn, and X⃗ ⊆ R to mean X1 ⊆
R ∧ . . . Xn ⊆ R

Proof. We prove by induction on the structure of second-order analytic sen-
tences, A that both A and its negation satisfy the theorem. Below .

1. ∀X⃗∀x⃗((Rx⃗ ∧ X⃗ ⊆ R ∧ Rig X⃗) → A → 2NA)

2. ∀X⃗∀x⃗((Rx⃗ ∧ X⃗ ⊆ R ∧ Rig X⃗) → ¬A → 2N¬A)

Let X⃗ and x⃗ be arbitrary entities satisfying (Rx⃗ ∧ X⃗ ⊆ R ∧ Rig X⃗).
Atomic sentences have the form x ≤ y, x = y, x+ y = z, Xy1...yn, etc. 1

follows from the rigidity of the structure, in the former cases, or the rigidity
of X in the last case. 2 follows from rigidity and the necessity of distinctness
of x, y, z, y1...yn.

For conjunctions, suppose A∧B. We know from the inductive hypothesis
that 2NA and 2NB, so 2N(A∧B). This establish 1. in the case of 2, we have
either ¬A or ¬B, so by the inductive hypothesis one of these two claims is
necessary, and thus so is ¬(A∧B). For the negation case 1 is trivial from the
IH, and 2 follows trivially from the IH and the equivalence of A and ¬¬A.

For first-order generalizations. These have the form of a restricted quan-
tification over the domain of ≤: ∀x(Rx → A). For 1, By the IH, for an
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arbitrary x in the domain, 2NA, i.e. ∀x(Rx → 2NA), so by the rigidity of
R, we have 2N∀x(Rx → A). For 2, assume that universal is false: for some
x, Rx and ¬A. We know that 2N¬A by the inductive hypothesis, and we
have 2NRx by rigidity, so 2N¬∀x(Rx → A), as required.

For second-order quantification we need Lemma C.6.
For 2, we will show the contrapositive. Suppose 3N∃X(X ⊆ R∧RigX ∧

A). We wish to show ∃X(X ⊆ R∧RigX ∧A). Given the inductive hypoth-
esis, it suffices to show ∃X(X ⊆ R ∧ RigX ∧ 3NA). Applying the Leibniz
biconditionals to our assumption we get the existence of a world proposi-
tion, 2N∀Y (WY → (Y ⊆ R ∧ Rig Y ∧ A[Y/X]). By Lemma C.6, there is
actually a rigid property, X ⊆ R such that 2N∀Y (WY → X = Y ), thus
3N(X ⊆ R ∧ Rig x ∧ A).

Theorem C.3 (Rigid Comprehension, Leibniz Biconditionals). For any sen-
tence of second-order analysis, A, with free variables S, we can prove 2∀S(RealS →
A) ∨2∀S(RealS → ¬A).

Proof. The proof can be given as follows.
Suppose for contradiction that 3∃S(RealS∧A(S))∧3∃S(RealS∧¬A(S).

Since there could have been a real number structure, the axiom of Poten-
tial Infinity is true, so R is an inflexible real number structure by Lemma
C.4. Either A(R) or ¬A(R)—without loss of generality, assume the for-
mer. Then we have that it’s 2N-necessary that R is a real number struc-
ture, by Lemma C.5, 2N-necessary that A(R) by Lemma C.7, and 2N-
necessary that ∀S(RealS ∧RealR → (A(R) ↔ A(S)) by Lemma C.3. Thus
2N∀S(RealS → A(S)). But 3∃S(RealS∧¬A(S)) entails 3N∃S.¬A(S), con-
tradiction. In the case that ¬A(R) the argument is similar.
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